31/B - Practice Midterm 1 - Solutions

October 12, 2011
1.a. (10 points) Let $f(x)=x^{2}+4 x+1$, and let $g(x)$ be the inverse of $f(x)$, defined on $[-2, \infty)$. Compute $g^{\prime}(6)$.

Solution We know that

$$
g^{\prime}(6)=\frac{1}{f^{\prime}(g(6))} .
$$

The number $g(6)$ is a number x such that $x^{2}+4 x+1=6$. Solving for x, we see that $x=1$ given the domain of $g(x)$. Since $f^{\prime}(x)=2 x+4$, we have

$$
g^{\prime}(6)=\frac{1}{f^{\prime}(1)}=\frac{1}{2+4}=\frac{1}{6} .
$$

1.b. (10 points) Compute the derivative of $\cos ^{-1}(x)$ at $x=\frac{\sqrt{2}}{2}$.

Solution Set $g(x)=\cos ^{-1}(x)$. We know that if $x=\frac{\pi}{4}$, then $\cos (x)=\frac{\sqrt{2}}{2}$. So,

$$
g^{\prime}\left(\frac{\sqrt{2}}{2}\right)=\frac{1}{-\sin \left(\frac{\pi}{4}\right)}=-\frac{2}{\sqrt{2}}=-\sqrt{2} .
$$

2.a. (10 points) Suppose that you create an annuity with an initial investment of $P(0)=$ 10000 , an interest rate of $r=.1$, and a continuous withdrawl of $N=5000$ per year. When does the annuity run out of money?

Solution We have the equation

$$
P(t)=\frac{N}{r}+\left(P(0)-\frac{N}{r}\right) e^{r t}
$$

Solving for $P(t)=0$, we find

$$
0=\frac{5000}{.1}+\left(10000-\frac{5000}{.1}\right) e^{.1 t}=50000-40000 e^{.1 t}
$$

So, we run out of money at

$$
t=10 \ln \frac{5}{4}
$$

2.b. (10 points) What is the minimal initial investment so that the annuity never runs out of money?

Solution We just need $P(0)-\frac{N}{r}$ to be non-negative. So, we need to invest at least

$$
\frac{N}{r}=\frac{5000}{.1}=50000
$$

3. (20 points) Compute

$$
\lim _{t \rightarrow \infty} \frac{\ln (t+2)}{\log _{2} t}
$$

Solution First, we write $\log _{2} t=\frac{\ln t}{\ln 2}$. Then,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{\ln (t+2)}{\log _{2} t} & =\lim _{t \rightarrow \infty} \frac{\ln (t+2)}{\frac{\ln t}{\ln 2}} \\
& =\ln 2 \lim _{t \rightarrow \infty} \frac{\ln (t+2)}{\ln t} \\
& =\ln 2 \lim _{t \rightarrow \infty} \frac{\frac{1}{t+2}}{\frac{1}{t}} \\
& =\ln 2 \lim _{t \rightarrow \infty} \frac{t}{t+2} \\
& =\ln 2 \lim _{t \rightarrow \infty} \frac{1}{1} \\
& =\ln 2 \cdot 1=\ln 2
\end{aligned}
$$

by two applications of L'Hôpital's rule.
4. (20 points) Compute the indefinite integral

$$
\int 2^{x} \cos x d x
$$

Solution Let's do substitution with

$$
\begin{array}{rl}
u=2^{x} & u^{\prime}=(\ln 2) 2^{x} \\
v^{\prime}=\cos x & v=\sin x
\end{array}
$$

Then, we get

$$
\int 2^{x} \cos x d x=2^{x} \sin x-(\ln 2) \int 2^{x} \sin x d x
$$

Doing substitution again for the second integral, we use

$$
\begin{gathered}
u=2^{x} \quad u^{\prime}=(\ln 2) 2^{x} \\
v^{\prime}=\sin x v=-\cos x
\end{gathered}
$$

So, we have

$$
\begin{aligned}
\int 2^{x} \cos x d x & =2^{x} \sin x-(\ln 2) \int 2^{x} \sin x d x \\
& =2^{x} \sin x-(\ln 2)\left(-2^{x} \cos x-(\ln 2) \int-2^{x} \cos x d x\right) \\
& =2^{x} \sin x+(\ln 2) 2^{x} \cos x-(\ln 2)^{2} \int 2^{x} \cos x d x
\end{aligned}
$$

We add $(\ln 2)^{2} \int 2^{x} \cos x d x$ to both sides and obtain

$$
\left(1+(\ln 2)^{2}\right) \int 2^{x} \cos x d x=2^{x} \sin x+(\ln 2) 2^{x} \cos x+C
$$

or

$$
\int 2^{x} \cos x d x=\frac{1}{1+(\ln 2)^{2}}\left(2^{x} \sin x+(\ln 2) 2^{x} \cos x\right)+C
$$

5. (20 points) Compute the indefinite integral

$$
\int \sqrt{x^{2}+9} d x
$$

Solution Let's do the substitution

$$
\begin{aligned}
x & =3 \tan \theta \\
d x & =3 \sec ^{2} \theta d \theta .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\int \sqrt{x^{2}+9} d x & =\int \sqrt{9 \tan ^{2} \theta+9} \sec ^{2} \theta d \theta=3 \int \sqrt{\sec ^{2} \theta} \sec ^{2} \theta d \theta \\
& =\int \sec ^{3} \theta d \theta
\end{aligned}
$$

Since we haven't covered this integral in class, let's leave it at that. If you want, you can use the recursive formula.

